Deepseek-R1とは

DeepSeek-R1とは?特徴と使い方について徹底解説

はじめに 近年、OpenAIのChatGPTやAnthropicのClaudeなどといった多くの生成AIが登場し、性能が飛躍的に向上しています。しかし、それらのモデルの多くは教師あり学習に強く使用されており、学習データの収集やアノテーションには膨大なコストがかかる問題があります。 なぜなら、大規模なモデルの学習には膨大な計算資源が必要であり、アクセスできる分野が限られているからです。クラウド上で高性能な計算資源を長時間利用すると、利用料金も高額になりがちです。 そこで、DeepSeek-R1は、膨大なデータセットで学習することができ、高度な推論能力と文脈理解能力を獲得しています。幅広い専門知識において複雑な質問や曖昧な指示に対して、文脈を正確に把握し、意図に沿った適切な応答を生成することが可能です。 自社でDeepSeekを導入する際、使い方が分からない方や特徴について気になる方が多いはずです。今回は、DeepSeekの特徴と使い方・注目理由まで分かりやすく解説します。 本記事では、DeepSeek-R1の特徴と使い方について詳しくご紹介していきます。 DeepSeek-R1とは DeepSeek-R1とは、中国のAI企業「DeepSeek社」によって開発されただいきぼ言語モデル(LLM)です。このAIモデルは総パラメータ数が6,710億にも及び、動作時には370億のパラメータを使用して運用されることから注目を集めています。 DeepSeek-R1とは、DeepSeekシリーズの最新モデルであり、推論能力に特化した大規模原語モデル(LLM)です。このモデルは、推論能力が優れた設計となっており、OpenAIの最新モデルと同等の性能を持っています。 DeepSeek-R1は、高性能なAIモデルの開発を手がける新興企業として知られ、特に推論 能力に特化したモデルを提供しているのが特徴です。モデルの開発過程は、DeepSeek-V3という基本モデルをべ―スにDeepSeek-R1というモデルが開発されました。 DeepSeek-R1は、通常のAI開発で用いられる教師あり学習を一切行わず、強化学習のみで開発されたのがきっかけです。強化学習で開発されたDeepSeek-R1は、高い推論能力を維持しながら、低コストで利用できる次世代のAIモデルとして世界中から注目を集めています。 このようにDeepSeek-R1は、多くの分野での導入が進められており、企業の業務効率化や学習支援に貢献しています。 DeepSeek-R1の技術的特徴 […]

DeepSeek-R1とは?特徴と使い方について徹底解説 続きを読む

Aiエージェントツール

おすすめAIエージェントツール10選について解説

はじめに 近年は、ChatGPTに次ぐ大規模言語モデル(LLM)の次世代の機械学習として、AIエージェントが注目されています。AIエージェント ツールとは、特定の目標を達成するために自律的にタスクを実行するプログラムです。 AIエージェント ツールは業務効率化に加えて、今まで分析ができなかった非構造データを分析することができます。ツールでは、テキストや音声・画像・動画といった整理が難しいデータを分析することができるようになり、より洞察が深い分析ができるのが特徴です。 例えば、「来週の東京の天気を調べて」と指示すれば、AIエージェントはインターネット上の天気予報サイトから情報を取得し、自身に結果を教えてくれます。しかし、AIエージェントの可能性はそれだけに留まらず、ビジネスの現場では、顧客対応の自動化やデータ分析などより複雑なタスクを任せられるようになってきています。 近年では、自社の業務を自動化を計画する企業が増えており、その中でAIエージェント ツールの検討が増えてきています。その注目度は日を追うごとに広がっていますが、AIエージェント ツールは何か・どんな種類があるのかといった業務に利用できるツールがあるのかを気になる方が多いはずです。 本記事では、AIエージェントツールの特徴と種類について詳しくご紹介していきます。  AIエージェントツールとは AIエージェント ツールとは、複数の人工技術やデバイスを組み合わせ、従来のAIではできなかった複数のタスクを自動的に実行するシステムです。AIエージェント ツールは、設定された環境やフィードバックに基づいて作業を実行し、データの分析から意思決定の支援・問題解決などの作業を実行します。

おすすめAIエージェントツール10選について解説 続きを読む

UipathとPower Automate

UiPathとPower Automateの2つを比較|自社に最適なRPAツールを選び方

はじめに 近年では、普段の手動で行っている業務では、ロボットに代行させることができるタスクが増えています。その中でRPAによるデータを別のシステムに転記するようなルーティン業務をロボットに任せるシステムが世界中のトレンドとなっています。 RPAとは、コンピュータ上の作業をロボットによって自動化する技術です。RPAでは、業務を自動化することによって、工数の削減やそれに伴う稼働時間の創出・人的ミスの防止などさまざまな効果があります。一方、自社で細かな単純作業や手作業を自動化したいと悩んでいる方が多いはずです。 特に中小企業・大企業では、膨大な業務量や複雑な基幹システムなどといった業務効率化を妨げる課題が数多く存在しています。そこで、現在のこうした課題を解消する手段として注目されているのがRPAツールPower AutomateとUiPathです。 自社の業務を効率化したいときにどのようなRPAを選べばいいのか分からない方もいるでしょう。RPAツールのPower AutomateとUiPathは多くのユーザーや企業で活用されています。 UiPathは乱雑なデータ処理や音声認識などでの効率化に特化していて、Power Automateはロ―コードでのアプリ開発やワークフローの自動化などを行うことが可能です。この記事では、中小企業や大企業に特化したRPAツール導入のメリットや選び方のポイントなどについて解説します。 本記事では、UiPathとPower Automateの比較について詳しくご紹介していきます。 RPAツールのUiPathとPower Automateとは RPAとは、ソフトウェア上のロボットを利用して定型的なPC作業を自動化するシステムです。RPAツールは経理や人事部門などのバックオフィス業務を効率化するためのシステムとして、働き方改革に取り組む企業などから注目を集めています。

UiPathとPower Automateの2つを比較|自社に最適なRPAツールを選び方 続きを読む

ChatgptとCopilotの違い

ChatGPTとCopilotの違いとは?特徴や6つの活用事例について解説

はじめに 近年ではAI技術の進化により、世界ではChatGPTをはじめとしたさまざまな生成AIが登場するようになりました。その中でもMicrosoft社からリリースされた「Copilot(コパイロット)」は、生成AI技術を活用して、ユーザーの業務を効率化するためのツールです。 これらのツールをビジネスに活用できると、資料作成の要約やルーチンワークの効率化やアイデア出しなどに活躍します。しかし、ChatGPTやCopilotにはそれぞれの特徴があり、自社での使用用途によって異なります。 ChatGPTやCopilotは、情報の新しさやMicrosoft製品を使用する頻度によってそれぞれ得意分野に違いがあるからです。例えば、CopilotはGPT-4で最新情報を知りたいときに取得できる分、ChatGPTは新しいアイデアが欲しいときに使用できます。 自社にChatGPTとCopilotを導入を検討したいけど違いについて知りたい方や業務の生産性を上げたいと気になる方は多いはずです。 そこで、ChatGPTとCopilotの違いについて具体的に解説していきます。本記事では、ChatGPTとCopilotの違いから特徴・6つの活用事例について詳しくご紹介していきます。 Microsoft Copilot とは Microsoft Copilotとは、自然言語処理とMicrosoft AIモデルを組み合わせたチャットベースのアプリです。Copilotは作業ウィンドウを開き、自分の知りたいことをCopilotに伝えるだけで、タスクの実行や情報の検索などを行うことができます。 Copilotは、2023年3月にMicrosoft社で発表され、11月から企業向けに公開が開始されたAIチャットサービスです。Copilotはプロンプトで指示を出し、その内容を基にアウトプットが生成される仕組みです。 CopilotはMicrosoft365を活用するスキルがなくても、高い処理速度で回答することができます。ここでは、Microsoft

ChatGPTとCopilotの違いとは?特徴や6つの活用事例について解説 続きを読む

データ分析とは

データ分析とは?おすすめのデータ分析ツールと5つの活用事例について解説

はじめに データ分析とは、あらゆる方法でデータを収集し、集めた大量のデータを整理・加工・分類したのちに、分析を行うプロセスです。 データ分析を行う目的は、データという根拠に基づいて、透明性が高い意思決定をすることです。現代ではユーザーの価値観が多様化し、ビジネスの市場が加速している現代において、データ分析の重要性は非常に高いです。 しかし、自社でデータ分析の導入や特徴について具体的にどのような意味なのか気になる方は多いはずです。データ分析を効果的に行うには、解決したい課題からデータ分析の目的を明確にし、適切な手法を選択することが重要です。 そこで、今回はデータ分析の意味から特徴を含めて、これからデータ分析でビジネスの活用を検討している方向けに解説していきます。本記事では、データ分析の特徴とおすすめのデータ分析ツール・活用事例について詳しくご紹介します。 データ分析とは データ分析とは、さまざまな方法でデータを収集し、整理や加工・統合した後に分析を行うことです。 データ分析は、主にビジネスや医療・科学研究など幅広い分野で活用されています。例えば、売上データの分散が大きい場合、売上の変動が激しいことを示しています。この情報をもとに、企業はリスクを軽減するための戦略を立てることができます。 具体的には、売上が不安定な商品に対してプロモーションを強化したり、在庫管理を書くことで、安定した収益を確保することが可能です。 これにより、企業は新たなビジネスチャンスを見つけたり、競争優位性を高めるための戦略を立てることができます。 このようにデータ分析とは、企業はかつ迅速な意思決定を行うことができ、競争力を高めることができます。 データ分析の種類 データ分析の種類 データの特徴

データ分析とは?おすすめのデータ分析ツールと5つの活用事例について解説 続きを読む

データ分析プラットフォームとは

データ分析プラットフォームとは?導入メリット、特徴、8つの構築のステップ

はじめに 近年では、多様なデータが存在する現代では、データの収集から加工・分析の一連のプロセスが重要になっています。データには文字や音声・画像・位置情報など、私たちの身の回りには多種多様なデータが存在しています。 データ分析プラットフォームとは、組織が持つ膨大なデータを適切に蓄積から加工・分析できるようにする、データ活用の基盤のことです。 データ分析プラットフォームは、さまざまなデータを収集→統合/管理→加工→可視化→分析→活用するための流れで分析します。この基盤は、企業や組織がデータを効率的に利用し、意思決定をサポートするために不可欠なものです。 しかし、企業で自社の競争力を高めるためにデータやAIをビジネスに活かしていきたいと考えている企業は多いですが、実際にツールやプラットフォームの活用まで至っている企業はまだまだ少ないのが課題です。 現代のIT技術が著しい時代において、大量のデータを市場環境の分析や顧客ニーズの把握などに活かしていくことは、企業にとって自社製品・サービスの改善への課題となっています。 自社でデータ分析プラットフォームを利用する上での業務でのメリットや特徴などを詳しくご紹介していきます。ここからは、データ分析プラットフォームの特徴と8つの構築のステップについて詳しくご紹介していきます。 データ分析プラットフォームとは データ分析プラットフォームとは、ビジネスに関連するさまざまなデータを統合し、分析できる状態にするシステムのことです。企業では日々、顧客情報や売上データなどといったさまざまなデータを管理しています。 しかし、データベースに取り扱うデータ量の増加に伴って、データの時系列や送受信履歴などが散在しがちです。このような課題を解決するためにデータ分析プラットフォームを活用すると、個々のデータを必要に応じて迅速に必要なものを探しやすい状態で管理ができるようになります。 これまで散在されていた膨大なデータはデータ分析プラットフォームであれば、まとめて統合し、現場部門が速やかにデータを活用できるよう整備できます。データを分析するとき、単なるデータストレージのデータではなく、グラフやチャートに起こすことでより明確な決断が可能となります。 このようにデータ分析プラットフォームは、企業が抱える膨大なデータの統合から管理・分析を行い、さまざまなデータソースの情報を一元管理することによってより迅速なデータ分析ができるのがポイントです。 データ分析プラットフォームの導入メリット データ分析プラットフォームは、組織の情報活用をサポートする重要な基盤です。

データ分析プラットフォームとは?導入メリット、特徴、8つの構築のステップ 続きを読む

Looker Studioの使い方

Looker Studioの使い方6ステップを徹底解説

はじめに 近年はデータ分析・活用の重要性が高まっており、それに伴いデータを業務に役立てるために分析業務にも力を入れる方が増えています。現代では社会のデジタル化が進み、BIツール・データ分析ツールの必要性が高まりました。 データ分析の結果をもとにした意思決定とビジネス戦略が企業の成長や生存戦略にもつながるため、現代のビジネスにおいて重要なツールです。データをレポート上に分かりやすい形に可視化するのにデータ分析ツールやBI(ビジネスインテリジェンス)ツールを使用する必要があります。 データを分かりやすい形に可視化することで、分析結果に対する理解が進み、他部門や取引先から協力が得られるようになります。 その中でデータ分析ツールの一つ、Looker Studio(旧:Googleデータポータル)と呼ばれるBIツールが注目されています。Looker Studioとは、Google Cloudが提供する完全クラウドべ―スのビジネスインテリジェンス(BIツール)ツールです。 Looker Studioは直感的な操作に特化していて、表やグラフをドラッグアンドドロップするだけで感覚的に使えるのが特徴です。 また、多くのデータソースと連携可能で、複数のデータソースを統合し、視覚的にわかりやすいレポートやダッシュボードを作成することができます。しかし、レポート作成に多くの時間を費やしていて気になる方や自社にLooker Studioを導入したいけど、ツールを使いこなせるか気になる方が多いはずです。 このような悩みを解決するためにLooker Studioの特徴からメリットとデメリット・使い方などについて解説していきます。本記事では、Looker

Looker Studioの使い方6ステップを徹底解説 続きを読む

Copilotの事例

Copilotの活用事例8選とプランごとの特徴について徹底解説

はじめに 近年では、Microsoft製品を利用している企業の間で、Microsoft  Copilotと呼ばれる生成AIが注目を集めています。Microsoft Copilotとは、多くの企業で活用されているOffice製品をさらに便利に使用するためのAIアシスタントです。  Copilotは多くの企業が活用するWordやExcel・PowerPoint・TemasなどのツールをCopilotで大幅に効率化することができます。今後はMicrosoft CopilotがWordやExcelなどのMicrosoft製品に組み込まれる予定となっていて、資料作成やメール作成・データ分析などをAIが自動化してくれるようになります。 一方、自社にMicrosoft  Copilotを導入するときにどのような特徴・費用か知りたい方は多いはずです。Copilotには無料版と有料版のプランが分かれており、使用用途によって機能が異なります。Copilot Pro有料版では、Microsoftアプリとの連携ができるようになり、最新モデルを高速で使用することができます。 そのため、効率化したい業務によって契約するプランや導入目的をしっかりチェックすることが必要です。 そこで今回は、Microsoft  Copilotの特徴や料金体系・活用事例などについて分かりやすく解説します。本記事では、Copilotの活用事例とプランごとの特徴について具体的にご紹介していきます。 Microsoft Copilot(コパイロット)とは

Copilotの活用事例8選とプランごとの特徴について徹底解説 続きを読む

自然言語処理(Nlp)とは

自然言語処理(NLP)とは?業界での10つの活用事例について徹底解説

はじめに 近年では、AIやチャットツールの普及により、人間が利用する日本語や英語などといった言語を理解できる技術「自然言語処理」が広まっています。自然言語処理(NLP)が注目されたのは、SNSやチャットアプリなどでテキストデータが増加したことが理由の一つです。 そもそも自然言語処理(NLP)とは、コンピュータが人間が使用する自然言語をコンピュータが理解し、処理できる技術です。自然言語処理はコンピュータが人間の指示を正しく理解することで、業務の効率化や人材不足の解消など多くの分野で注目を集めています。 インターネット上ではユーザーの興味やニーズに沿ったテキストデータが多数存在するようになり、企業ではマーケティング活動などで役立てることができます。このように企業に自然言語処理の技術を活用すると、これまで人間が紙で管理していた膨大な資料をテキストデータとして分析することが可能です。 しかし、企業で自然言語処理を導入を検討したい方や自然言語処理がどのような技術か気になる方は多いはずです。そこで、自然言語処理の特徴や他社でどのように活用されているか含めて解説していきます。 本記事では、自然言語処理(NLP)の特徴から事例・今後について詳しくご紹介していきます。 自然言語処理(NLP)とは 自然言語処理(NLP)とは、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術です。自然言語処理が発展した背景には、コンピュータの処理能力やネットワーク技術の進歩により、大量のデータを活用できるようになったことです。 例えば、コンピュータに話しかけると異なる言語に翻訳してくれる翻訳技術やチャットボットなどさまざまな技術が進展しています。チャットボットでの自然言語処理は、入力された文章を的確に理解し、それに応じた回答を生成する技術です。 近年ではチャットボットは製品やサービスに対して顧客から問い合わせられた質問に、AIが回答するシステムとして活用されるケースが多いです。チャットボットに自然言語処理の技術を導入することで、人間のような自然な会話をリアルタイムで行えるようになりました。 自然言語処理の技術の一つである「汎用言語モデル」が開発され、「GPT-4」や「BERT」などが発表されました。 このように自然言語処理は人間の言葉を解析し、それを基にさまざまなタスクを自動化することが可能です。自然言語処理はまだまだ進化し続けており、今後はクラウド技術の活用やより精度の高い言語理解の生成が可能になると期待されています。 自然言語処理(NLP)の仕組み 自然言語処理(NLP)とは、コンピュータが人間の言語を理解し、生成するための技術です。自然言語処理では、準備「機械可読目録(辞書)/コーパス」から「形態素解析/構文解析/意味解析/文脈解析」という4つの工程が順番に行われています。

自然言語処理(NLP)とは?業界での10つの活用事例について徹底解説 続きを読む

Chatgpt・Gemini・Claude 2

ChatGPT・Gemini・Claudeの3つ生成AIモデルを徹底比較!自社に最適な生成AIモデルは?

はじめに 近年、生成AIツールの普及が進んでおり、その中で文章生成やアイデアを生成する機能を持つ生成AIは注目を集めています。そもそも生成AIとは、「Generative AI」の略でテキストや画像や音声などのデータを生成するAIシステムです。 生成AIツールは、多くの企業で導入が進んでおり、クリエイティブな作業やマニュアル作成などの特定の業務を自動化が実現されています。 しかし、生成AIツールを導入する目的を定めないと、操作の難しさや情報の正確性が原因でかえって業務効率の低下につながってしまう可能性があります。 生成AIツールには得意な分野と苦手な分野があるため、意図しない結果を生まないようにあらかじめ把握することが大切です。例えば、業務マニュアル作成やプレゼン資料などの作成でもAIを利用する場合、出力結果の根拠が不明瞭では情報の信頼性を担保できません。 これらの生成AIツールを選ぶ際は、情報の正確性やセキュリティリテラシー・著作権侵害などに注意することが大切です。 ビジネスで自社の業務に取り入れるとなると、どのツールが最適化か悩む方が多いはずです。そこで今回は生成AIのChatGPT、Gemini、Claudeのツールの特徴や注意点などを解説していきます。 本記事では、自社に最適なツールを選ぶときにChatGPT・Gemini・Claudeの3つのツールの徹底比較について具体的にご紹介していきます。 生成AIツールのChatGPT・Gemini・Claudeとは 生成AIツールとは、Generative AI:ジェネレーティブAIと呼ばれ、学習済みのデータを活用してオリジナルデータを生成する技術です。この技術はディープラーニングを用いて、大量の学習データから学習し、新しい情報やアイデアを生み出す能力を持っています。 ディープラーニングは画像認識や音声認識・自然言語処理など、さまざまな分野で高い精度を実現しました。機械学習やディープラーニングといった技術により精度の高い生成AIが登場し、生成できるコンテンツの質が高まっているのが一つです。 そして、このディープラーニングがChatGPTやGeminiといった生成AIツールの誕生のきっかけになるのです。これらの技術の発展により生成AIツールはより複雑なパターンや特徴を学習し、高度なタスクに対応できるようになりました。

ChatGPT・Gemini・Claudeの3つ生成AIモデルを徹底比較!自社に最適な生成AIモデルは? 続きを読む

Scroll to Top