AiエージェントとエージェンティックAi

AIエージェントとエージェンティックAIの違いとは?役割・特徴・ユースケース6選を整理

はじめに AIエージェントとエージェンティックAIは、近年のAI活用において頻繁に登場する用語ですが、その違いや関係性が分かりにくいと感じる人も多いはずです。どちらも業務自動化や効率化を支える重要な概念である一方、担う役割や設計レイヤーは大きく異なります。AIエージェントは個別のタスク実行を担う存在であり、エージェンティックAIは複数の要素を組み合わせて目標達成を目指す仕組みです。 本記事では、両者の役割や特徴を整理し、違いを明確にしたうえで、業務別ユースケースを通じた使い分けの考え方を解説します。AI導入や設計を検討する際の判断材料として役立つ内容をまとめます。 AIエージェントとは AIエージェントとは、特定の目的やタスクを実行するために設計されたAIの実行主体を指します。ユーザーや上位システムから与えられた指示をもとに、情報収集、判断、アクションを一連の流れとしておこなう点が特徴です。単なる文章生成や応答にとどまらず、外部ツールやAPIを利用して処理を進められる点が、従来の生成AIとの違いといえます。 AIエージェントは、業務の一工程や一機能を担う存在として活用されることが多く、役割や行動範囲はあらかじめ定義されます。たとえば、情報検索を専門におこなうエージェントや、入力内容を整理して処理結果を返すエージェントなど、用途ごとに分けて設計されます。このように役割を限定することで、動作の予測性や安定性を高められます。 一方で、AIエージェントの自律性は限定的です。基本的には与えられた指示や条件に基づいて動作し、長期的な目標設定や全体最適の判断までは担いません。そのため、単体で複雑な業務全体を管理するよりも、定型的な作業や部分的な自動化に向いています。AIエージェントは、業務効率化を支える実行単位として、実務に取り入れやすい存在です。 エージェンティックAIとは エージェンティックAIとは、単一のAI機能に依存するのではなく、目標達成を起点としてAI全体の振る舞いを設計する考え方やシステム構造を指します。個々の処理を単発で実行するのではなく、計画、判断、実行、振り返りといった流れを自律的に回しながら、継続的にタスクを進める点が特徴です。AIエージェントは構成要素の一つであり、エージェンティックAIはそれらを統合する上位概念といえます。 エージェンティックAIでは、最初に達成すべき目標を設定し、その目標に向けてどの行動を取るかをAI自身が判断します。必要に応じて外部ツールや複数のエージェントを使い分け、状況に応じた意思決定をおこないます。途中で得られた結果を評価し、次の行動に反映させる仕組みを持つため、長期的な処理や複雑な業務にも対応しやすくなります。 このような特性から、エージェンティックAIは業務全体の自動化や最適化を目的とした設計に向いています。単なる作業効率化にとどまらず、業務プロセスそのものを見直すきっかけとなる存在として、今後のAI活用において重要な役割を担うと考えられます。 エージェンティックAIとAIエージェントの関係性 エージェンティックAIとAIエージェントは、しばしば同じ意味で使われることがありますが、正確には役割と概念のレイヤーが異なります。両者の関係性を理解することは、AI活用の設計を考えるうえで重要です。AIエージェントは具体的な動作主体であり、エージェンティックAIはそれらを組み合わせて目標達成を目指す設計思想や仕組みを指します。 ここでは、それぞれの特徴を整理しながら、両者がどんな関係にあるのかを明確にします。 […]

AIエージェントとエージェンティックAIの違いとは?役割・特徴・ユースケース6選を整理 続きを読む

エージェンティックAiとは

エージェンティックAIとは?主な特徴や代表的なツール・5つの活用事例を紹介

はじめに エージェンティックAIは、指示された内容に応答するだけのAIとは異なり、目標達成までの行動を自ら設計し、判断しながら実行できる技術として注目を集めています。業務の一部を自動化する生成AIやRPAが普及する一方で、複数工程にまたがる業務や状況に応じた判断が必要な領域では、従来の手法だけでは限界が見え始めています。こうした課題に対する新たな選択肢として登場したのが、エージェンティックAIです。 エージェンティックAIは、大規模言語モデルを中核に据えながら、タスクの分解、行動計画の立案、外部ツールの活用、結果の評価といった処理を一連の流れとして自律的におこないます。そのため、人が細かく指示を出さなくても、業務全体を前に進められる点が特徴です。近年では、情報収集やカスタマーサポート、営業支援、システム運用など、実務に近い場面での活用が広がりつつあります。 本記事では、エージェンティックAIとは何かを基礎から整理したうえで、主な特徴や代表的なツール、さらに実務でのイメージがつかみやすい5つの活用事例を紹介します。生成AIとの違いや導入時に押さえるべきポイントにも触れながら、企業が検討する際の判断材料を提供します。 エージェンティックAIとは エージェンティックAIとは、あらかじめ与えられた指示に対して回答を返すだけのAIではなく、達成すべき目標を起点に、自ら考え、行動し、結果を評価しながら処理を進めるAIの仕組みを指します。生成AIが文章生成や要約といった単発タスクを得意とするのに対し、エージェンティックAIは複数工程にまたがる業務全体を対象にできる点が大きな違いです。 この仕組みの中核には、大規模言語モデルを用いた推論機能があります。エージェンティックAIは目標を細かなタスクに分解し、それぞれに必要な情報や手段を判断します。そのうえで、外部のAPIや業務システム、データベースなどを活用しながら実行に移します。途中で想定外の結果が出た場合でも、状況を再評価し、別の手順を選択できる点が特徴です。 また、エージェンティックAIはタスクの進行状況や過去の行動履歴を保持し、それを次の判断に反映します。これにより、単発処理では難しかった長期的な業務や条件分岐の多いプロセスにも対応しやすくなります。人の介入を最小限に抑えつつ、業務を前に進められるため、効率化だけでなく意思決定のスピード向上にもつながります。 近年では、実験的な活用にとどまらず、特定業務に絞った形での導入が進んでいます。エージェンティックAIは、人の仕事をすべて置き換える存在ではなく、判断と実行を補助する役割として位置づけられています。その特性を理解したうえで設計することで、業務プロセス全体のあり方を見直すきっかけとなる技術です。 エージェンティックAIが注目される背景 エージェンティックAIが注目される背景には、生成AIの普及によって明らかになった業務自動化の限界があります。文章作成や要約、翻訳といった作業は生成AIによって効率化が進みましたが、実際の業務では複数の工程や判断が連続するケースが多く、単発の指示と応答だけでは対応しきれない場面が少なくありません。人が都度指示を出し続ける運用は、工数削減という観点でも課題が残ります。 また、企業を取り巻く環境の変化も影響しています。人手不足の深刻化や業務の高度化により、担当者一人あたりの負担は増え続けています。特に、情報収集や確認作業、調整業務など、判断と実行を繰り返す業務は属人化しやすく、安定した運用が難しい状況です。こうした課題に対し、目標を与えるだけで一定の判断と実行を任せられるエージェンティックAIは有効な選択肢として捉えられています。 さらに、AIを業務システムや外部サービスと連携させる技術基盤が整ってきた点も注目を後押ししています。API連携やクラウドサービスの活用が一般化したことで、AIが実際の業務処理に踏み込める環境が整いました。単なる支援ツールではなく、業務フローの一部を担う存在として設計できるようになったことが、エージェンティックAIへの関心を高めています。 このように、生成AIの進化、業務課題の顕在化、技術基盤の成熟が重なった結果、エージェンティックAIは次の業務自動化の形として注目されるようになっています。

エージェンティックAIとは?主な特徴や代表的なツール・5つの活用事例を紹介 続きを読む

Scroll to Top